Hyundai GMS90X51C Flat Panel Television User Manual


 
GMS90X5XC Series HYUNDAI MicroElectronics
Jan. 2001 Ver 1.0 25
DC Characteristics
DC Characteristics for GMS90C51C/52C/54C
V
CC
= 5V + 10%, -15%; V
SS
=0V; T
A
= 0°C to 70°C
Parameter Symbol
Limit Values
Unit Test Conditions
Min. Max.
Input low voltage
(except EA
, RESET)
V
IL
-0.5 0.2V
CC
- 0.1 V -
Input low voltage (EA
)V
IL1
-0.5 0.2V
CC
- 0.3 V -
Input low voltage (RESET) V
IL2
-0.5 0.2V
CC
+ 0.1 V -
Input high voltage (except
XTAL1, EA
, RESET)
V
IH
0.2V
CC
+ 0.9 V
CC
+ 0.5 V -
Input high voltage to XTAL1 V
IH1
0.7V
CC
V
CC
+ 0.5 V -
Input high voltage to EA
,
RESET
V
IH2
0.6V
CC
V
CC
+ 0.5 V -
Output low voltage
(ports 1, 2, 3)
V
OL
-0.45VI
OL
= 1.6mA
1)
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V
OL
of ALE and port 3.
The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 tran-
sitions during bus operation. In the worst case (capacitive loading:
>
50pF at 3.3V,
>
100pF at 5V), the noise pulse on ALE
line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with
a schmitt-trigger strobe input.
Output low voltage
(port 0, ALE, PSEN
)
V
OL1
-0.45VI
OL
= 3.2mA
1)
Output high voltage
(ports 1, 2, 3)
V
OH
2.4
0.9V
CC
-VI
OH
= -80
µ
A
I
OH
= -10
µ
A
Output high voltage
(port 0 in external bus
mode, ALE, PSEN)
V
OH1
2.4
0.9V
CC
-VI
OH
= -800
µ
A
2)
I
OH
= -80
µ
A
2)
Logic 0 input current
(ports 1, 2, 3)
I
IL
-10 -50
µ
AV
IN
= 0.45V
Logical 1-to-0 transition cur-
rent (ports 1, 2, 3)
I
TL
-65 -650
µ
AV
IN
= 2.0V
Input leakage current
(port 0, EA)
I
LI
-
±
1
µ
A 0.45
<
V
IN
<
V
CC
Pin capacitance C
IO
-10pFf
C
= 1MHz
T
A
= 25
°
C
Power supply current:
Active mode, 12MHz
3)
Idle mode, 12MHz
3)
Active mode, 24 MHz
3)
Idle mode, 24MHz
3)
Active mode, 40 MHz
3)
Idle mode, 40 MHz
3)
Power Down Mode
3)
I
CC
I
CC
I
CC
I
CC
I
CC
I
CC
I
PD
-
-
-
-
-
-
-
21
4.8
36.2
8.2
58.5
12.5
50
mA
mA
mA
mA
mA
mA
µ
A
V
CC
= 5V
4)
V
CC
= 5V
5)
V
CC
= 5V
4)
V
CC
= 5V
5)
V
CC
= 5V
4)
V
CC
= 5V
5)
V
CC
= 5V
6)